Possible Solutions

Building A in downtown Austin is 54 meters tall and casts a shadow 18 meters
long. Building B next door is 6 meters tall. What is the length of the shadow cast by Building B ?

BuildingA

Building B

Possible Solution 1

- Look at the proportional relationship between the two buildings such as $\frac{\text { Height of Building } A}{\text { Shadow of Building } A}=\frac{\text { Height of Building } B}{\text { Shadow of Building } B}$ which becomes $\frac{54}{18}=\frac{6}{x}$.
- To determine the value of x, cross multiply $54 \cdot x=18 \cdot 6$ which now becomes, $54 x=108$.
- Divide each side of the equation by 54, which now becomes, $\frac{54 x}{54}=\frac{108}{54}$.
- $x=2$
- The shadow of the smaller building is 2 m long.

Possible Solution 2

- Another solution is to look at the relationship between the two buildings such as $\frac{\text { Height of Building } A}{\text { Height of Building } B}=\frac{\text { Shadow of Building } A}{\text { Shadow of Building } B}$ which becomes $\frac{54}{6}=\frac{18}{x}$.
- Divide 54 by 6 , which now becomes, $9=\frac{18}{x}$.
- $x=2$
- The shadow of the smaller building is 2 m long.

